«GUI: Time-domain continuous vs sampled signals, and FFT representation» by jamshark70
on 14 Aug'19 05:32 inHere's a demo I cooked up for a synthesis theory class. Textbooks say that the Nyquist theorem proves there is one only one way to draw a band-limited continuous signal through a set of samples. This GUI lets you see it for yourself.
In the multislider for the samples, you can set the sample values arbitrarily and watch the 16x oversampled curve change. (Set only one point, all others 0, and you see a band-limited impulse AKA sinc function. Or, you can programmatically put in a geometrically perfect sawtooth or pulse wave, and see the Gibbs effect.)
Or you can adjust the cosine partials' magnitudes and phases directly.
And, turn up the volume and listen to the wavetable.
If you read the code, you can pick up a lot of tricks for manipulating FFT data on the client side. For instance, I'm doing the 16x oversampling by expanding a 32-point FFT out to 512 points (inserting zeros in the middle, so that the 12th partial is still the 12th partial). The trick that wasn't obvious at first is that the phases of the top half of an FFT (the frequency-aliased mirror image) are inverted. Tricks like that.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
( s.waitForBoot { var size = 32, oversampling = 16, fftCosTable = Signal.fftCosTable(size), bigCosTable = Signal.fftCosTable(size * oversampling); var data; var userView, sampleView, spectrumLayouts, spectrumViews; // [DC, bin1, bin2, nyquist] // --> [DC, bin1, bin2, nyquist, 0, 0, 0, nyquist, bin2, bin1] var mirrorExpandArray = { |array, outSize| array.extend(outSize div: 2 + 1, 0).foldExtend(outSize) }; var ifft = { |polar, outSize(size * oversampling)| var halfSize = size div: 2, halfExpanded = outSize div: 2, factor = outSize / size, rho, expanded, table = case { factor == 1 } { fftCosTable } { factor == oversampling } { bigCosTable } { Signal.fftCosTable(outSize) }; rho = mirrorExpandArray.(polar.rho[0 .. halfSize] * factor, outSize); // if factor > 1, then the nyquist bin is copied by foldExtend // but the base fft does not copy -- so the expanded one is doubling it, we must halve it // if factor <= 1, nyquist is not doubled so leave it alone if(factor > 1.0) { rho[halfSize] = rho[halfSize] * 0.5; rho[outSize - halfSize] = rho[halfSize]; }; expanded = Polar( rho, // mirror image should invert the phases // 'lace' takes all the first elements, then all the second elements // so you get first half = 1, second half = -1 // doesn't this mess with Nyquist? No... // Nyquist phase must be one of 0, pi or -pi. // 0.0 * -1 = 0.0, no problem // cos(k * theta - pi) == cos(k * theta + pi) so again, no problem Array.fill(halfExpanded, [1, -1]).lace(outSize) * mirrorExpandArray.(polar.theta[0 .. halfSize], outSize) ).asComplex; expanded.real.as(Signal).ifft(expanded.imag.as(Signal), table) .real }; var showSpectrum = { |polar| spectrumViews.do { |column, i| column[0].value = polar.rho[i] / size * 2; column[1].value = polar.theta[i] / 2pi + 0.5; }; }; var buffer = Buffer.alloc(s, size * oversampling * 2, 1), synth, ampSlider, freqSlider; z = size; // data size, make available outside // data/fft interface, available outside e = data = ( data: nil, data_: { |self, array| if(array.size == size) { self[\data] = array.as(Signal); self[\fft] = self[\data].fft( Signal.newClear(array.size), fftCosTable ).asPolar; self[\expanded] = ifft.(self[\fft], size * oversampling); self.changed(\data); } { Error("Container got % values, expected %".format(array.size, size)).throw; }; self }, fft_: { |self, polar| self[\fft] = polar; self[\data] = ifft.(polar, size); self[\expanded] = ifft.(polar, size * oversampling); self.changed(\data); }, ); data.data = Array.fill(size, 0); w = Window("Signal lab", Rect.aboutPoint(Window.screenBounds.center, 400, 300)); w.layout = VLayout( HLayout( StaticText().fixedWidth_(50).align_(\center).string_("amp:"), ampSlider = Slider().orientation_(\horizontal).fixedHeight_(24), StaticText().fixedWidth_(50).align_(\center).string_("freq:"), freqSlider = Slider().orientation_(\horizontal).fixedHeight_(24) ), StackLayout( sampleView = MultiSliderView(), userView = UserView() ).mode_(\stackAll), HLayout(*( spectrumLayouts = Array.fill(size div: 2 + 1, { VLayout().spacing_(2) }) )).spacing_(2) ); spectrumViews = Array.fill(spectrumLayouts.size, { |i| var out = [ Slider().action_({ |view| var rho = data[\fft].rho; rho[i] = view.value * size * 0.5; if(i.inclusivelyBetween(1, size div: 2 - 1)) { rho[size - i] = rho[i]; }; data.fft = Polar(rho, data[\fft].theta); }), Knob().mode_(\vert).action_({ |view| var theta = data[\fft].theta; theta[i] = (view.value - 0.5) * 2pi; if(i.inclusivelyBetween(1, size div: 2 - 1)) { theta[size - i] = theta[i].neg; }; data.fft = Polar(data[\fft].rho, theta); }), StaticText().fixedHeight_(18).string_("k=" ++ i).align_(\center) ]; out.do { |view| spectrumLayouts[i].add(view) }; out }); userView .background_(Color.white) .drawFunc_({ |view| var extent = view.bounds.extent, hardcodedMultiSliderMargin = 6, // don't change this xSize = extent.x, ySize = extent.y - hardcodedMultiSliderMargin - sampleView.valueThumbSize, bigSize = size * oversampling, xWidth = (xSize - hardcodedMultiSliderMargin) / bigSize, adjustment = ((xSize - hardcodedMultiSliderMargin) / size + hardcodedMultiSliderMargin) * 0.5, yAdjustment = (hardcodedMultiSliderMargin + sampleView.valueThumbSize) * 0.5, polar = data[\fft], halfSize = size div: 2, timeDomain, unmapX = { |x| ((x - adjustment) / xWidth) % bigSize }, mapY = { |y| (0.5 - (0.5 * y)) * ySize + yAdjustment }, // new func: x is horizontal view position mapPoint = { |x| Point(x, mapY.(timeDomain.blendAt(unmapX.(x), \wrapAt))) }; timeDomain = data[\expanded]; Pen.moveTo(mapPoint.(hardcodedMultiSliderMargin div: 2)); (hardcodedMultiSliderMargin div: 2 .. xSize - (hardcodedMultiSliderMargin div: 2)).do { |x| Pen.lineTo(mapPoint.(x)) }; Pen.stroke; }); sampleView.background_(Color(1, 1, 1, 0)) // Color.clear has a bug .fillColor_(Color.black).strokeColor_(Color.black) .elasticMode_(true) .drawRects_(true).drawLines_(false) .thumbSize_(8) .gap_(0) .value_(data[\data] * 0.5 + 0.5) .action_({ |view| data.data = view.value * 2 - 1; showSpectrum.(data[\fft]); }); data.addDependant { sampleView.value = data[\data] * 0.5 + 0.5; showSpectrum.(data[\fft]); buffer.setn(0, data[\expanded].as(Signal).asWavetable); userView.refresh; }; data.changed(\data); // force refresh all views w.onClose = { data.releaseDependants; synth.release; buffer.free }; w.front; synth = { |bufnum, freq = 100, amp = 0| (Osc.ar(bufnum, freq) * amp).dup }.play(args: [bufnum: buffer]); freqSlider.value_(100.explin(5, 500, 0, 1)) .action_({ |view| synth.set(\freq, view.value.linexp(0, 1, 5, 500)) }); ampSlider.value_(0) .action_({ |view| synth.set(\amp, view.value.lincurve(0, 1, 0, 1, 3)) }); ~ifft = ifft; }; ) // programmatic manipulation // e is the data object; z is number of samples // set sample points directly e.data = Array.fill(z, { |i| i.linlin(0, z, 0.8, -0.8) }); // saw e.data = Array.fill(z div: 2, [0.7, -0.7]).lace(z); // square e.data = Array.fill(z, 0); // clear e.data = Array.fill(z, 0).put(z div: 2, 0.707); // positive pulse e.data = Array.fill(z, 0).put(z div: 2, -0.707); // negative: watch phases! e.data = Array.fill(z, { 0.5.rand2 }); // noise // randomize phases e.fft = Polar(e.fft.rho, Array.fill(z div: 2 + 1, { rrand(-pi, pi) }).foldExtend(z) * Array.fill(z div: 2, [1, -1]).lace(z)); // H. James Harkins, 8/2019, CC-NC-BY-SA