Submit
Browse
Anonymous
Login
RSS
SuperCollider Code
Fork Code: GUI: Time-domain continuous vs sampled signals, and FFT representation
name
code content
( s.waitForBoot { var size = 32, oversampling = 16, fftCosTable = Signal.fftCosTable(size), bigCosTable = Signal.fftCosTable(size * oversampling); var data; var userView, sampleView, spectrumLayouts, spectrumViews; // [DC, bin1, bin2, nyquist] // --> [DC, bin1, bin2, nyquist, 0, 0, 0, nyquist, bin2, bin1] var mirrorExpandArray = { |array, outSize| array.extend(outSize div: 2 + 1, 0).foldExtend(outSize) }; var ifft = { |polar, outSize(size * oversampling)| var halfSize = size div: 2, halfExpanded = outSize div: 2, factor = outSize / size, rho, expanded, table = case { factor == 1 } { fftCosTable } { factor == oversampling } { bigCosTable } { Signal.fftCosTable(outSize) }; rho = mirrorExpandArray.(polar.rho[0 .. halfSize] * factor, outSize); // if factor > 1, then the nyquist bin is copied by foldExtend // but the base fft does not copy -- so the expanded one is doubling it, we must halve it // if factor <= 1, nyquist is not doubled so leave it alone if(factor > 1.0) { rho[halfSize] = rho[halfSize] * 0.5; rho[outSize - halfSize] = rho[halfSize]; }; expanded = Polar( rho, // mirror image should invert the phases // 'lace' takes all the first elements, then all the second elements // so you get first half = 1, second half = -1 // doesn't this mess with Nyquist? No... // Nyquist phase must be one of 0, pi or -pi. // 0.0 * -1 = 0.0, no problem // cos(k * theta - pi) == cos(k * theta + pi) so again, no problem Array.fill(halfExpanded, [1, -1]).lace(outSize) * mirrorExpandArray.(polar.theta[0 .. halfSize], outSize) ).asComplex; expanded.real.as(Signal).ifft(expanded.imag.as(Signal), table) .real }; var showSpectrum = { |polar| spectrumViews.do { |column, i| column[0].value = polar.rho[i] / size * 2; column[1].value = polar.theta[i] / 2pi + 0.5; }; }; var buffer = Buffer.alloc(s, size * oversampling * 2, 1), synth, ampSlider, freqSlider; z = size; // data size, make available outside // data/fft interface, available outside e = data = ( data: nil, data_: { |self, array| if(array.size == size) { self[\data] = array.as(Signal); self[\fft] = self[\data].fft( Signal.newClear(array.size), fftCosTable ).asPolar; self[\expanded] = ifft.(self[\fft], size * oversampling); self.changed(\data); } { Error("Container got % values, expected %".format(array.size, size)).throw; }; self }, fft_: { |self, polar| self[\fft] = polar; self[\data] = ifft.(polar, size); self[\expanded] = ifft.(polar, size * oversampling); self.changed(\data); }, ); data.data = Array.fill(size, 0); w = Window("Signal lab", Rect.aboutPoint(Window.screenBounds.center, 400, 300)); w.layout = VLayout( HLayout( StaticText().fixedWidth_(50).align_(\center).string_("amp:"), ampSlider = Slider().orientation_(\horizontal).fixedHeight_(24), StaticText().fixedWidth_(50).align_(\center).string_("freq:"), freqSlider = Slider().orientation_(\horizontal).fixedHeight_(24) ), StackLayout( sampleView = MultiSliderView(), userView = UserView() ).mode_(\stackAll), HLayout(*( spectrumLayouts = Array.fill(size div: 2 + 1, { VLayout().spacing_(2) }) )).spacing_(2) ); spectrumViews = Array.fill(spectrumLayouts.size, { |i| var out = [ Slider().action_({ |view| var rho = data[\fft].rho; rho[i] = view.value * size * 0.5; if(i.inclusivelyBetween(1, size div: 2 - 1)) { rho[size - i] = rho[i]; }; data.fft = Polar(rho, data[\fft].theta); }), Knob().mode_(\vert).action_({ |view| var theta = data[\fft].theta; theta[i] = (view.value - 0.5) * 2pi; if(i.inclusivelyBetween(1, size div: 2 - 1)) { theta[size - i] = theta[i].neg; }; data.fft = Polar(data[\fft].rho, theta); }), StaticText().fixedHeight_(18).string_("k=" ++ i).align_(\center) ]; out.do { |view| spectrumLayouts[i].add(view) }; out }); userView .background_(Color.white) .drawFunc_({ |view| var extent = view.bounds.extent, hardcodedMultiSliderMargin = 6, // don't change this xSize = extent.x, ySize = extent.y - hardcodedMultiSliderMargin - sampleView.valueThumbSize, bigSize = size * oversampling, xWidth = (xSize - hardcodedMultiSliderMargin) / bigSize, adjustment = ((xSize - hardcodedMultiSliderMargin) / size + hardcodedMultiSliderMargin) * 0.5, yAdjustment = (hardcodedMultiSliderMargin + sampleView.valueThumbSize) * 0.5, polar = data[\fft], halfSize = size div: 2, timeDomain, unmapX = { |x| ((x - adjustment) / xWidth) % bigSize }, mapY = { |y| (0.5 - (0.5 * y)) * ySize + yAdjustment }, // new func: x is horizontal view position mapPoint = { |x| Point(x, mapY.(timeDomain.blendAt(unmapX.(x), \wrapAt))) }; timeDomain = data[\expanded]; Pen.moveTo(mapPoint.(hardcodedMultiSliderMargin div: 2)); (hardcodedMultiSliderMargin div: 2 .. xSize - (hardcodedMultiSliderMargin div: 2)).do { |x| Pen.lineTo(mapPoint.(x)) }; Pen.stroke; }); sampleView.background_(Color(1, 1, 1, 0)) // Color.clear has a bug .fillColor_(Color.black).strokeColor_(Color.black) .elasticMode_(true) .drawRects_(true).drawLines_(false) .thumbSize_(8) .gap_(0) .value_(data[\data] * 0.5 + 0.5) .action_({ |view| data.data = view.value * 2 - 1; showSpectrum.(data[\fft]); }); data.addDependant { sampleView.value = data[\data] * 0.5 + 0.5; showSpectrum.(data[\fft]); buffer.setn(0, data[\expanded].as(Signal).asWavetable); userView.refresh; }; data.changed(\data); // force refresh all views w.onClose = { data.releaseDependants; synth.release; buffer.free }; w.front; synth = { |bufnum, freq = 100, amp = 0| (Osc.ar(bufnum, freq) * amp).dup }.play(args: [bufnum: buffer]); freqSlider.value_(100.explin(5, 500, 0, 1)) .action_({ |view| synth.set(\freq, view.value.linexp(0, 1, 5, 500)) }); ampSlider.value_(0) .action_({ |view| synth.set(\amp, view.value.lincurve(0, 1, 0, 1, 3)) }); ~ifft = ifft; }; ) // programmatic manipulation // e is the data object; z is number of samples // set sample points directly e.data = Array.fill(z, { |i| i.linlin(0, z, 0.8, -0.8) }); // saw e.data = Array.fill(z div: 2, [0.7, -0.7]).lace(z); // square e.data = Array.fill(z, 0); // clear e.data = Array.fill(z, 0).put(z div: 2, 0.707); // positive pulse e.data = Array.fill(z, 0).put(z div: 2, -0.707); // negative: watch phases! e.data = Array.fill(z, { 0.5.rand2 }); // noise // randomize phases e.fft = Polar(e.fft.rho, Array.fill(z div: 2 + 1, { rrand(-pi, pi) }).foldExtend(z) * Array.fill(z div: 2, [1, -1]).lace(z)); // H. James Harkins, 8/2019, CC-NC-BY-SA
code description
Here's a demo I cooked up for a synthesis theory class. Textbooks say that the Nyquist theorem proves there is one only one way to draw a band-limited continuous signal through a set of samples. This GUI lets you see it for yourself. In the multislider for the samples, you can set the sample values arbitrarily and watch the 16x oversampled curve change. (Set only one point, all others 0, and you see a band-limited impulse AKA sinc function. Or, you can programmatically put in a geometrically perfect sawtooth or pulse wave, and see the Gibbs effect.) Or you can adjust the cosine partials' magnitudes and phases directly. And, turn up the volume and listen to the wavetable. If you read the code, you can pick up a lot of tricks for manipulating FFT data on the client side. For instance, I'm doing the 16x oversampling by expanding a 32-point FFT out to 512 points (inserting zeros in the middle, so that the 12th partial is still the 12th partial). The trick that wasn't obvious at first is that the phases of the top half of an FFT (the frequency-aliased mirror image) are inverted. Tricks like that.
use markdown for formating
category tags
comma separated, i.g. "wild, siren" (do not enter default SC class names, please)
ancestor(s)
comma separated identificators, i.g. "1-C,1-1,1-4M,1-x"
Private?
the code will be accessible by direct url and not visible in public activity
signup to submit public code without captcha
comment of change