«Cars» by DSastre
on 22 Nov'12 17:17 inA "toy" engine, a four cylinder engine with slugging speed and an advanced engine example. Based on pure data code from the book "Designing Sound" by Andy Farnell. (Chapter 45)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
//Fig 45.3: A "toy" engine //Instead of using a toggle object to simulate the break, the same functionality is implemented by moving the mouse cursor into the right or left half of the screen. ( { var toy, toggle, noise; toggle = MouseX.kr(0,1).round(1); toy = BPF.ar(WhiteNoise.ar, 9, 15.reciprocal); toy = (toggle * toy); toy = (toy + (SinOsc.ar(9) * K2A.ar(Select.kr(toggle, [1,0])))) * 600; toy = Clip.ar(toy, 0, 1); toy = (toy - OnePole.ar(toy, exp(-2pi * (10 * SampleDur.ir)))); toy = OnePole.ar(toy, exp(-2pi * (30 * SampleDur.ir))); noise = WhiteNoise.ar; noise = (noise - OnePole.ar(noise, exp(-2pi * (1000 * SampleDur.ir)))); noise = BPF.ar(noise, 590, 4.reciprocal); toy = toy * noise; toy = BPF.ar(toy, [470, 780, 1024], [8, 9, 10].reciprocal).sum; toy = (toy - OnePole.ar(toy, exp(-2pi * (100 * SampleDur.ir)))); toy = (toy * 2).dup; }.play; ) //Fig 45.4/45.5: A four cylinder engine with slugging speed ( { var jitterEngine, noise, bufferA, bufferB, fourstroke, engineSpeed; bufferA = LocalBuf(44100, 1); bufferB = LocalBuf(44100, 1); engineSpeed = MouseX.kr(0,1); noise = WhiteNoise.ar; noise = OnePole.ar(noise, exp(-2pi * (20 * SampleDur.ir))); noise = OnePole.ar(noise, exp(-2pi * (20 * SampleDur.ir))); noise = DelTapWr.ar([bufferA, bufferB], [noise * 0.5, noise * 10]); fourstroke = DelTapRd.ar(bufferA, noise[0], [5, 10, 15, 20]/1000); fourstroke = LFSaw.ar(OnePole.ar((K2A.ar(engineSpeed) * 40), exp(-2pi * (0.8 * SampleDur.ir))), 1, 0.5, 0.5) + fourstroke - [0.75, 0.5, 0.25, 0]; fourstroke = (fourstroke * 2pi).cos; fourstroke.scope; fourstroke = fourstroke * (DelTapRd.ar(bufferB, noise[1], [5, 10, 15, 20]/1000) + ((1 - engineSpeed) * 15 + 7)); fourstroke = 1 / ((fourstroke * fourstroke) + 1); fourstroke = fourstroke.sum!2 * 0.25; }.play; ) //Fig 45.8: Advanced Engine //Advanced engine with multiple transmission paths and warping non-linear waveguide. Contains the subpatches from fig 45.5, 45.6 and 45.7. At the end there is also an example how to control some parameters via a MIDI controller. ( e = SynthDef(\engine, { | // arguments range: 0.0 - 1.0 mixCylinders = 0.8, mixParabolic = 0.9, engineSpeed = 0, parabolaDelay = 0.15, warpDelay = 0.4, waveguideWarp = 0.67, wguideFeedback = 0.35, wguideLength1 = 0.2, wguideLength2 = 0.3, wguideWidth1 = 0.5, wguideWidth2 = 0.7 | // To be able to send arrays as arguments you have to declare them as variables and // use NamedControl.kr. Take also a look at the MIDI example at the bottom how to address them. var transDelay = NamedControl.kr(\transDelay, [0.2, 0.3, 0.45]); var overtonePhase = NamedControl.kr(\overtonePhase, [0.25, 0.35, 0.5]); var overtoneFreq = NamedControl.kr(\overtoneFreq, [0.3, 0.47, 0.38]); var overtoneAmp = NamedControl.kr(\overtoneAmp, [0.1, 0.2, 0.2]); var noise, bufferA, bufferB, bufferTd, fourstroke, phasor, td, parabola, fm1, preFM1, fm2, preFM2, overtone, overtoneDrive, e1b, e2a, e2b, e1a, spacewarp, engine; engineSpeed = MouseX.kr(0,1); bufferA = LocalBuf(44100, 1); bufferB = LocalBuf(44100, 1); bufferTd = LocalBuf(44100, 1); noise = WhiteNoise.ar; noise = OnePole.ar(noise, exp(-2pi * (20 * SampleDur.ir))); noise = OnePole.ar(noise, exp(-2pi * (20 * SampleDur.ir))); noise = (DelTapWr.ar([bufferA, bufferB], [noise * 0.5, noise * 30])); phasor = LFSaw.ar( OnePole.ar(K2A.ar(engineSpeed) * 30, exp(-2pi * (0.8 * SampleDur.ir))), 1, 0.5, 0.5); td = DelTapWr.ar(bufferTd, phasor); fourstroke = DelTapRd.ar(bufferA, noise[0], [5, 10, 15, 20]/1000, 4); fourstroke = phasor + fourstroke - [0.75, 0.5, 0.25, 0]; fourstroke = (fourstroke * 2pi).cos; fourstroke = fourstroke * (DelTapRd.ar(bufferB, noise[1], [5, 10, 15, 20]/1000, 4) + ((1 - engineSpeed) * 15 + 7)); fourstroke = 1 / ((fourstroke * fourstroke) + 1); fourstroke = fourstroke.sum * mixCylinders; fourstroke = fourstroke - OnePole.ar(fourstroke, exp(-2pi * (4 * SampleDur.ir))); parabola = DelTapRd.ar(bufferTd, td, (parabolaDelay * 100)/1000, 1) - 0.5; parabola = parabola * parabola * (-4) + 1 * 3 * mixParabolic; preFM1 = DelTapRd.ar(bufferTd, td, (warpDelay * 100)/1000, 1); preFM1 = (preFM1 * 2pi).cos; preFM2 = K2A.ar(engineSpeed * waveguideWarp); preFM2 = OnePole.ar(preFM2, exp(-2pi * (0.2 * SampleDur.ir))); fm1 = (1 - preFM1) * preFM2 + 0.5; fm2 = (preFM2 * preFM1) + 0.5; overtoneDrive = overtoneDrive!3; overtone = overtone!3; 3.do{|i| overtoneDrive[i] = DelTapRd.ar(bufferTd, td, (transDelay[i]*100)/1000) * (0.5**(i+1)*32); overtoneDrive[i] = Wrap.ar(overtoneDrive[i]); overtone[i] = overtoneDrive[i].max(overtonePhase[i]) - overtonePhase[i]; overtone[i] = overtone[i] * (1 - overtonePhase[i]).reciprocal; overtone[i] = overtone[i] * ((overtoneFreq[i] * 12) * overtonePhase[i]); overtone[i] = Wrap.ar(overtone[i]) - 0.5; overtone[i] = (overtone[i] * overtone[i]) * (-4) + 1 * 0.5; overtone[i] = (overtone[i] * (1 - overtoneDrive[i])) * (overtoneAmp[i] * 12); }; # e1b, e2b, e2a, e1a = DelayC.ar( in: InFeedback.ar(bus:(10..13)), maxdelaytime: 1, delaytime: ((([wguideLength1,wguideWidth1,wguideLength2,wguideWidth2] * 40) * [fm1,fm1,fm2,fm1])/1000) ); OffsetOut.ar(11, e1b + overtone[1]); e2b = e2b + overtone[2]; OffsetOut.ar(13, e2b); e2a = e2a + overtone[0]; OffsetOut.ar(10, e2a); OffsetOut.ar(12, e1a * wguideFeedback + (parabola - OnePole.ar(parabola, exp(-2pi * (30 * SampleDur.ir))))); spacewarp = e1b + e2b + e2a + e1a; spacewarp = spacewarp - OnePole.ar(spacewarp, exp(-2pi * (200 * SampleDur.ir))); spacewarp = spacewarp - OnePole.ar(spacewarp, exp(-2pi * (200 * SampleDur.ir))); engine = (spacewarp + fourstroke)!2 * 0.5; Out.ar(0, engine); }).play; ) //For testing so many different parameters at once, a device with multiple controllers is your best friend. MIDIIn.connectAll; ( var transFreq = Array.newClear(3); MIDIFunc.cc({ |val, num| switch( num, 1, {e.set(\wguideFeedback, (val/128).range(0,1).postln)}, 2, {e.set(\mixParabolic, (val/128).range(0,1).postln)}, 3, {e.setn(\overtoneFreq, transFreq.put(0, (val/128).range(0,1)).postln)}, 4, {e.setn(\overtoneFreq, transFreq.put(1, (val/128).range(0,1)).postln)}, 5, {e.setn(\overtoneFreq, transFreq.put(2, (val/128).range(0,1)).postln)}, 6, {e.set(\parabolicDelay, (val/128).range(0,1).postln)}, 7, {e.set(\warpDelay, (val/128).range(0,1).postln)}, 8, {e.set(\waveguideWarp, (val/128).range(0,1).postln)}, ) }); ) // code also available here: // http://en.wikibooks.org/wiki/Designing_Sound_in_SuperCollider/Cars
reception
I add this tag so we can retrieve others codes from this book