«neural sirens» by clarkenciel
on 03 Dec'17 02:09 in1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
( SynthDef(\noise, { arg freq, amp, q; var signal = BPF.ar( WhiteNoise.ar, freq: In.kr(freq), mul: In.kr(amp), rq: In.kr(q) ); Out.ar(0, signal ! 2) }).add; SynthDef(\line, { arg start, end, dur, bus; var env = Env([start, end], [dur]); var signal = EnvGen.kr(env, doneAction: 2); Out.kr(bus, signal ! bus.numChannels); }).add; ) ( ~noiseRamper = { arg initialFreq, initialAmp, initialQ, group=nil; var lineGroup = Group.new(group, \addToTail); var soundGroup = Group.after(lineGroup); var freqBus = Bus.control(s, 2).set(initialFreq); var ampBus = Bus.control(s, 2).set(initialAmp); var qBus = Bus.control(s, 2).set(initialQ); var noise = Synth.head(soundGroup, \noise, [ \freq, freqBus, \amp, ampBus, \q, qBus ]); var ramp = { arg bus, end, dur; lineGroup.freeAll; bus.get { arg value; Synth.head(lineGroup, \line, [ \bus, bus, \start, value, \end, end, \dur, dur ]) }; }; ( free: { arg self; noise.free; lineGroup.freeAll; soundGroup.freeAll; }, rampFreq: { arg self, end, dur; ramp.value(freqBus, end, dur); self }, rampAmp: { arg self, end, dur; ramp.value(ampBus, end, dur); self }, rampQ: { arg self, end, dur; ramp.value(qBus, end, dur); self }, ) }; ~noisesFromNetwork = { arg network, fundamental, masterGroup; network.collect { arg layer, lIndex; var baseIndex = lIndex + 1; layer.asArray.collect { arg row, rIndex; var rowIndex = rIndex + 1; row.collect { arg value, vIndex; var valueIndex = vIndex + 1; var freqOffset = (2 + value) ** (rowIndex + valueIndex + baseIndex).nextPrime; var freq = (fundamental * baseIndex) + freqOffset; var amp = value + 0.9; var q = value * 0.001; ~noiseRamper.value(freq, amp, q, masterGroup) } } } }; ) ( ~neuralNetwork = { arg layerDimensions; layerDimensions.collect { arg dimensions; Matrix.with(Array.fill(dimensions.first, { Array.rand(dimensions.last, 0, 1.0) })) } }; ~forward = { arg network, input; var weightedInputs = []; var activations = [input]; var currentWeightedInput, currentActivation = input; network.do { arg layer; currentWeightedInput = currentActivation * layer; currentActivation = currentWeightedInput.tanh; weightedInputs = weightedInputs add: currentWeightedInput; activations = activations add: currentActivation; }; [weightedInputs, activations] }; ~guess = { arg network, input; ~forward.value(network, input).last.last }; ~outputError = { arg guess, target; target - guess }; ~sigmoidPrime = { arg x; 1 - (x.tanh ** 2) }; ~backProp = { arg network, input, target; // calculate weight updates to improve network performance var result = ~forward.value(network, input); var weightedInputs = result.first; var activations = result.last; var guess = activations.last; var error = target - guess; var delta, updates; delta = Matrix.with(error.asArray * weightedInputs.last.collect(~sigmoidPrime).asArray); updates = [activations.drop(-1).last.flop * delta]; (network.size - 2).to(0, -1) do: { arg index; var weightedInput = weightedInputs at: index; var activation = activations at: index; var layer = network at: (index + 1); var derivative = weightedInput.collect(~sigmoidPrime); delta = Matrix with: ((delta * layer.flop).asArray * derivative.asArray); updates = [(activation.flop * delta)] ++ updates }; updates }; ~applyUpdates = { arg network, updates, learningRate=0.1; network collect: { arg layer, index; layer + (updates.at(index) * learningRate) } }; ~trainLoop = { arg network, observations, steps=10, learningRate=0.1, action={}; Routine.new { steps do: { arg idx; var observation = observations.choose; var input = observation.first; var target = observation.last; var updates = ~backProp.value(network, input, target); network = ~applyUpdates.value(network, updates, learningRate); action.value(idx, network, input, target); }; 'done'.postln; } }; ) ( var network = ~neuralNetwork value: [[2, 3], [3, 1]]; var observations = [ [[[0, 1]], [[1]]], [[[1, 0]], [[1]]], [[[1, 1]], [[0]]], [[[0, 0]], [[0]]], ].collect { arg obs; obs collect: { arg x; Matrix.with(x) } }; ~master = Group.new; ~fundamental = 300; ~stepDur = 10; ~noises = ~noisesFromNetwork.value(network, ~fundamental, ~master); ~netLoop = ~trainLoop.value(network, observations, steps: 100000, learningRate: 0.01, action: { arg count, net, in, t; ~stepDur.wait; "-------------".postln; net.asArray do: { arg layer, lIndex; var layerIndex = lIndex + 1; layer do: { arg row, rIndex; var rowIndex = rIndex + 1; row do: { arg value, vIndex; var noise = ~noises.at(lIndex).at(rIndex).at(vIndex); var valueIndex = vIndex + 1; var freqOffset = (2 + value) ** (rowIndex + valueIndex + layerIndex).nextPrime; var freq = (~fundamental * layerIndex) + freqOffset + (value * 25); var amp = value + 0.9; var q = value * (0.001 + 0.009.rand); [freq, amp, q].postln; if(noise.notNil && [true, false].choose, { noise.rampAmp(amp, ~stepDur).rampFreq(freq, ~stepDur).rampQ(q, ~stepDur); }) } } }; } ).play )
reception
comments