«Cumulative Pulses» by henklass
on 29 Oct'16 13:30 inCumulative pulses Imagine pulse-generators with different frequencies. Pulses are added together to generate control signals, e.g. for pitch, or maybe time. The signals can be presented in an array to be used in a Pbind. The length of this array is determinded by the lcm of all reciprocal frequencies / periods. The number of pulse-generators determines the ambitus of the signals. The signals are repeated palindromes.
Example:
period | pulses
1: 1 1 1 1 1 1 1 1 1 1
2: 1 0 1 0 1 0 1 0 1 0
Si: 2 1 2 1 2 1 2 1 2 1
1: 1 1 1 1 1 1 1 1 1 1
2: 1 0 1 0 1 0 1 0 1 0
3: 1 0 0 1 0 0 1 0 0 1
S: 3 1 2 2 2 1 3 1 2 2
1: 1 1 1 1 1 1 1 1 1 1 1 1
2: 1 0 1 0 1 0 1 0 1 0 1 0
3: 1 0 0 1 0 0 1 0 0 1 0 0
4: 1 0 0 0 1 0 0 0 1 0 0 0
s: 4 1 2 2 3 1 3 1 3 2 2 1
In this case, the signal is used to play a melody. The separate pulse-generators are shown bij different steps on a randomly chosen scale. For the bass-line the melody is cut in half and each half is played on a different channel in half tempo.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
/* Cumulative pulses Imagine pulse-generators with different frequencies. Pulses are added together to generate control signals, e.g. for pitch, or maybe time. The signals can be presented in an array to be used in a Pbind. The length of this array is determinded by the lcm of all reciprocal frequencies / periods. The number of pulse-generators determines the ambitus of the signals. The signals are repeated palindromes. Example: period | pulses 1 1 1 1 1 1 1 1 1 1 1 2 1 0 1 0 1 0 1 0 1 0 Signal: 2 1 2 1 2 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 0 1 0 1 0 1 0 1 0 3 1 0 0 1 0 0 1 0 0 1 Signal: 3 1 2 2 2 1 3 1 2 2 1: 1 1 1 1 1 1 1 1 1 1 1 1 2: 1 0 1 0 1 0 1 0 1 0 1 0 3: 1 0 0 1 0 0 1 0 0 1 0 0 4: 1 0 0 0 1 0 0 0 1 0 0 0 s: 4 1 2 2 3 1 3 1 3 2 2 1 In this case, the signal is used to play a melody. The separate pulse-generators are shown bij different steps on a randomly chosen scale. For the bass-line the melody is cut in half and each half is played on a different channel in half tempo. */ s.boot; ( SynthDef(\theSine, { | freq = 440, amp = 1 , pan = 0| Out.ar(0, Pan2.ar( SinOsc.ar(freq) * EnvGen.kr(Env.perc(0.001, 1, 1, -8), doneAction: 2), pan, amp ); ) }).send; SynthDef(\theBlip, { |freq=440, numharm=8, pan = 0, amp=1| Out.ar( 0, Pan2.ar( Blip.ar(freq, numharm, 1) * EnvGen.kr(Env.perc(0.1, 1, 1, -8), doneAction: 2), pan, amp ); ); }).send; ) ( var theNumber = 8, theDuration = 0.2, theScale=Scale.choose.postln; var theValues, thePulses, bass1, bass2; var grandLcm; /* grandLcm takes 1 argument n and computes the least common multiple of a series of numbers, 1..n */ grandLcm={arg n; if (n>=2, {g=lcm (thisFunction.value(n-1), n)}, {g=1} ); g; }; //thePulses contains the patterns of each individual pulse-generator thePulses=Array.new(theNumber+1); thePulses.add([0]); //thePulses.add([1]); for (1, theNumber, { arg i; var thePattern; thePattern=Array.newClear(grandLcm.value(theNumber)+1); //thePattern.size.postln; for(0, grandLcm.value(theNumber), { arg j; if (j.mod(i)==0, {thePattern[j]=1}, {thePattern[j]=0} ); }); thePulses.add(thePattern); }); //thePulses.postln; //theValues contains the result of all pulse-generators theValues=Array.newClear(grandLcm.value(theNumber)+1); for (0, theValues.size-1, { arg i; theValues[i]=0; }); for (2, theNumber, { arg i; for (0, theValues.size-1, { arg j; if (j.mod(i)==0,{theValues[j]=theValues[j]+1}); }); }); //theValues.postln; theValues.plot; //the pattern of each pulse-generator gets its own pitch and stereo-position for (1, theNumber ,{ arg i; Pbind( \instrument, \theSine, \scale, theScale, \degree, Pseq(thePulses[i]*i, 1), \octave, 5, \dur, theDuration, \amp, 1/theNumber, \pan, (2*i/theNumber-1) ).play; }); //resulting melody in the center Pbind( \instrument, \theBlip, \scale, theScale, \degree, Pseq(theValues, 1), \numharm, theNumber, \pan, 0, \dur, theDuration, \amp, 0.05 ).play; //adding basslines bass1=Array.newClear(theValues.size / 2 +1); for (0, bass1.size-1, {arg i; bass1[i]=theValues[i] }); Pbind( \instrument, \theBlip, \degree, Pseq(bass1, 1), \numharm, theNumber/2, \pan, -1, \scale, theScale, \octave, 2, \dur, theDuration*2, \amp, 0.25 ).play; bass2=bass1.reverse; Pbind( \instrument, \theBlip, \degree, Pseq(bass2, 1), \numharm, theNumber/2, \pan, 1, \scale, theScale, \octave, 2, \dur, theDuration*2, \amp, 0.25 ).play; )